
proteomes

Article

CSF Proteomic Alzheimer’s Disease-Predictive Subtypes in
Cognitively Intact Amyloid Negative Individuals

Betty Marije Tijms 1,*, Johan Gobom 2,3, Charlotte Teunissen 4, Valerija Dobricic 5, Magda Tsolaki 6 ,
Frans Verhey 7, Julius Popp 8,9, Pablo Martinez-Lage 10, Rik Vandenberghe 11,12, Alberto Lleó 13,
José Luís Molinuévo 14,15, Sebastiaan Engelborghs 16,17 , Yvonne Freund-Levi 18,19, Lutz Froelich 20 ,
Lars Bertram 5,21, Simon Lovestone 22,†, Johannes Streffer 16,23, Stephanie Vos 7, ADNI ‡, Kaj Blennow 2,3 ,
Philip Scheltens 1, Henrik Zetterberg 2,3,24,25 and Pieter Jelle Visser 1,7,19

����������
�������

Citation: Tijms, B.M.; Gobom, J.;

Teunissen, C.; Dobricic, V.; Tsolaki, M.;

Verhey, F.; Popp, J.; Martinez-Lage, P.;

Vandenberghe, R.; Lleó, A.; et al. CSF

Proteomic Alzheimer’s Disease-

Predictive Subtypes in Cognitively

Intact Amyloid Negative Individuals.

Proteomes 2021, 9, 36. https://doi.org/

10.3390/proteomes9030036

Academic Editor:

Eleanor Drummond

Received: 16 June 2021

Accepted: 23 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC,
1007 MB Amsterdam, The Netherlands; p.scheltens@amsterdamumc.nl (P.S.);
pj.visser@amsterdamumc.nl (P.J.V.)

2 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden;
johan.gobom@neuro.gu.se (J.G.); kaj.blennow@neuro.gu.se (K.B.); henrik.zetterberg@clinchem.gu.se (H.Z.)

3 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska
Academy at the University of Gothenburg, 413 45 Mölndal, Sweden

4 Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical
Centers (AUMC), Amsterdam Neuroscience, 1007 MB Amsterdam, The Netherlands;
c.teunissen@amsterdamumc.nl

5 Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, 23562 Lübeck, Germany;
valerija.dobricic@uni-luebeck.de (V.D.); lars.bertram@uni-luebeck.de (L.B.)

6 1st Department of Neurology, AHEPA University Hospital, Makedonia, 546 21 Thessaloniki, Greece;
tsolakim1@gmail.com

7 Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University,
6211 LK Maastricht, The Netherlands; f.verhey@maastrichtuniversity.nl (F.V.);
s.vos@maastrichtuniversity.nl (S.V.)

8 Old Age Psychiatry, University Hospital Lausanne, 1011 Lausanne, Switzerland; julius.popp@chuv.ch
9 Department of Geriatric Psychiatry, University Hospital of Psychiatry and University of Zürich,

8008 Zürich, Switzerland
10 Fundación CITA-Alzhéimer Fundazioa, 20009 San Sebastian, Spain; pmlage@cita-alzheimer.org
11 Neurology Service, University Hospitals Leuven, 3000 Leuven, Belgium; rik.vandenberghe@uzleuven.be
12 Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
13 IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona,

08041 Barcelona, Spain; alleo@santpau.cat
14 Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain;

jlmolinuevo@barcelonabeta.org
15 Alzheimer’s Disease Unit and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona,

08041 Barcelona, Spain
16 Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of

Antwerp, 2610 Antwerpen, Belgium; sebastiaan.engelborghs@uzbrussel.be (S.E.);
johannes.streffer@acimmune.com (J.S.)

17 Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurosciences,
Vrije Universiteit Brussel, 1090 Brussels, Belgium

18 School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden; yvonne.freund-levi@ki.se
19 Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences

and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
20 Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg,

68159 Mannheim, Germany; lutz.froelich@zi-mannheim.de
21 Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo,

0373 Oslo, Norway
22 University of Oxford, Oxford OX1 2JD, UK; slovesto@its.jnj.com
23 AC Immune SA, 1024 Lausanne, Switzerland
24 Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
25 UK Dementia Research Institute at UCL, London WC1E 6BT, UK
* Correspondence: b.tijms@amsterdamumc.nl
† Currently at Janssen Medical Ltd (UK).
‡ Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design

Proteomes 2021, 9, 36. https://doi.org/10.3390/proteomes9030036 https://www.mdpi.com/journal/proteomes

https://www.mdpi.com/journal/proteomes
https://www.mdpi.com
https://orcid.org/0000-0002-2072-8010
https://orcid.org/0000-0003-0304-9785
https://orcid.org/0000-0003-1494-0813
https://orcid.org/0000-0002-1890-4193
https://doi.org/10.3390/proteomes9030036
https://doi.org/10.3390/proteomes9030036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/proteomes9030036
https://www.mdpi.com/journal/proteomes
https://www.mdpi.com/article/10.3390/proteomes9030036?type=check_update&version=1


Proteomes 2021, 9, 36 2 of 15

and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Abstract: We recently discovered three distinct pathophysiological subtypes in Alzheimer’s disease
(AD) using cerebrospinal fluid (CSF) proteomics: one with neuronal hyperplasticity, a second with
innate immune system activation, and a third subtype with blood–brain barrier dysfunction. It
remains unclear whether AD proteomic subtype profiles are a consequence of amyloid aggregation,
or might exist upstream from aggregated amyloid. We studied this question in 127 older individuals
with intact cognition and normal AD biomarkers in two independent cohorts (EMIF-AD MBD
and ADNI). We clustered 705 proteins measured in CSF that were previously related to AD. We
identified in these cognitively intact individuals without AD pathology three subtypes: two subtypes
were seen in both cohorts (n = 49 with neuronal hyperplasticity and n = 44 with blood–brain
barrier dysfunction), and one only in ADNI (n = 12 with innate immune activation). The proteins
specific for these subtypes strongly overlapped with AD subtype protein profiles (overlap coefficients
92%–71%). Longitudinal p181-tau and amyloid β 1–42 (Aβ42) CSF analysis showed that in the
hyperplasticity subtype p181-tau increased (β = 2.6 pg/mL per year, p = 0.01) and Aβ42 decreased
over time (β = −4.4 pg/mL per year, p = 0.03), in the innate immune activation subtype p181-tau
increased (β = 3.1 pg/mL per year, p = 0.01) while in the blood–brain barrier dysfunction subtype
Aβ42 decreased (β = −3.7 pg/mL per year, p = 0.009). These findings suggest that AD proteomic
subtypes might already manifest in cognitively normal individuals and may predispose for AD
before amyloid has reached abnormal levels.

Keywords: Alzheimer’s disease; cerebrospinal fluid proteomics; risk factors; cognitive functioning;
amyloid beta; tau

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common
cause of dementia. The pathological hallmarks are aggregation of amyloid in plaques and
aggregation of tau in neurofibrillary tangles in the brain and biomarkers for amyloid and
tau pathology are now used for the diagnosis of AD [1–6]. Recent proteomics studies in
plaques, tangles, and cortical tissue suggest that individuals with AD show considerable
variability in terms of other pathophysiological processes involved [7–10]. However, it
remains unclear whether such processes are a downstream consequence of amyloid ag-
gregation, or whether they might be dysregulated upstream from amyloid aggregation.
Currently the field is starting to test therapies that prevent amyloid aggregation. For exam-
ple, the A3 trial will test whether inhibiting beta-secretase 1 (BACE1), which is an enzyme
that initiates amyloidogenic processing of the amyloid-precursor protein (APP) [11], may
prevent amyloid aggregation in older individuals with normal cognition and normal AD
biomarkers (https://clinicaltrials.gov (accessed on 20 May 2021)). For this reason, it is im-
portant to increase the understanding of interindividual differences in pathophysiological
processes that contribute to disease heterogeneity in Alzheimer’s disease.

Cerebrospinal fluid (CSF) contains thousands of proteins, and their concentrations
may reflect alterations in ongoing (patho-)physiological processes in vivo. For example,
amyloid and tau CSF levels can be used as a biomarker for the presence of AD pathology,
which can already be detected in very early stages of the disease when cognition is still
normal [12–16]. Furthermore, in cognitively intact older individuals without AD pathology,
higher CSF levels of proteins associated with abnormal APP processing predict future
amyloid aggregation [15]. This suggests that CSF protein levels may indicate that AD
pathophysiological processes have started before aggregated amyloid can be detected.
In CSF it is also possible to tease out disease heterogeneity in AD, as we previously
identified AD subtypes that show distinct CSF proteomic profiles [17]. One subtype showed
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hyperplasticity, increased BACE1 activity and high levels of tau, the second showed innate
immune system activation and the third subtype showed blood–brain barrier dysfunction,
mostly normal tau levels and hypoplasticity. It could be hypothesized that if AD proteomic
subtypes exist upstream from amyloid aggregation, it may be possible to identify these
cognitively intact older individuals, and that if these processes are specific for AD they
should relate to future amyloid and/or p181-tau aggregation.

Here we studied this question in cognitively intact individuals with normal AD
biomarkers by data-driven cluster analysis of CSF protein levels. We found that two sub-
types in cognitively intact individuals with normal AD biomarkers strongly overlapped
with the subtypes observed in AD individuals. In a subset of individuals with longitudinal
AD biomarkers we found that in these subtypes AD biomarkers in CSF became more abnor-
mal over time. This suggests that distinct AD subtypes may precede amyloid abnormality
and may indicate that there could be distinct pathophysiological processes leading to AD.

2. Materials and Methods
2.1. Participant Description

We selected individuals with intact cognition and normal CSF amyloid β 1–42 (Aβ42)
and t-tau measures with available proteomics data from two independent multicenter
AD studies, the European Medical Information Framework for Alzheimer’s disease Mul-
timodal Biomarker Discovery study (EMIF-AD MBD [18]) and the Alzheimer’s disease
Neuroimaging Initiative (ADNI, adni.loni.usc.edu). Both cohorts included individuals with
intact cognition, mild cognitive impairment (MCI), or AD-type dementia as determined
according to international consensus criteria [19–22]. ADNI started in 2003 as a public-
private collaboration under the supervision of Principle Investigator Michael W. Weiner,
MD. The primary goal of ADNI is to study whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological measures can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD). Please see www.adni-info.org
for the latest information. ADNI data was downloaded on 30 March 2018. The institutional
review boards of all participating institutions approved the procedures for this study.
Written informed consent was obtained from all participants or surrogates.

2.2. Cerebrospinal Fluid Data

CSF samples were obtained as previously described [18,23,24]. CSF Aβ42, t-tau, and
p181-tau levels were measured with INNOTEST ELISAs in EMIF-AD MBD, and in ADNI
with the multiplex xMAP Luminex platform (Luminex Corp, Austin, TX, USA) with the
INNOBIA AlzBio3 kit (Fujirebio, Ghent, Belgium) at the ADNI Biomarker Core laboratory
at the University of Pennsylvania Medical Center. For ADNI biomarker abnormality was
defined by Aβ42 levels <192 pg/mL and t-tau levels >93 pg/mL [18,23,24]. In EMIF-AD
MBD cut-offs for p were study specific as previously reported [17,18,23,24]. Cluster analy-
ses were performed on proteomic data performed using tandem mass tag (TMT) technique
with 10 + 1 plexing in EMIF-AD MBD using high-pH reverse phase HPLC for peptide pre-
fractionation [17,25,26]. The EMIF-AD MBD mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE [27] partner repository with
the dataset identifier PXD019910 and 10.6019/PXD019910. Normalized abundances with
associated clinical data can be requested from the EMIF-AD MBD consortium [17]. In ADNI,
4 proteins included were determined with ELISAs, 311 protein fragments determined with
Multi Reaction Monitoring (MRM) targeted mass spectroscopy, and 83 proteins measured
with Rules Based Medicine (RBM) multiplex. Information on protein assessment and
quality control is described at http://adni.loni.usc.edu/data-samples/biospecimen-data/
(accessed on 14 July 2020). For ADNI MRM we used the quality controlled finalized
‘Normalized Intensity’ data [28] (please see for detailed explanation of the normalization
procedure the “Biomarkers Consortium CSF Proteomics MRM data set” in the “Data
Primer” document at adni.loni.ucla.edu). All proteins (EMIF-AD MBD and ADNI) and

www.adni-info.org
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protein fragments (ADNI) values were first normalized according to mean and standard
deviation values of the control group. Next, for ADNI, protein fragments from MRM
measurements were combined into a protein score when these correlated with r > 0.5, and
fragments that did not correlate were left out for the present analyses. Eleven proteins were
measured by different platforms in ADNI, for which values were averaged if they corre-
lated with r > 0.5 and else we selected the protein as measured by MRM (mean r = 0.74; min
r = −0.50, max r = 0.92; for one protein RBM was excluded, another protein (CST3) showed
a strong anticorrelation between RBM and MRM of r= −0.85, and was excluded). Only
proteins that were observed in 100% of the sample, and that we previously associated with
AD in our previous study [17] were considered for subsequent analyses, resulting in total
556 proteins in EMIF-AD MBD and 149 proteins in ADNI (see Supplementary Table S1). A
subset of individuals had additional protein measurements available, which we excluded
from clustering to use as independent outcomes for subtype interpretation. In ADNI these
were Aβ 1–40 and Aβ 1–38 measured with 2D-UPLC tandem mass spectrometry, BACE1
activity, and Elisa measures of neurogranin, neurofilament light, VILIP, YKL40, SNAP25,
and sTREM2. In EMIF-AD MBD Elisa measurements were available for Aβ 1–40, Aβ 1–38,
neurogranin, neurofilament light, and YKL-40 [18].

2.3. APOE e4 Genotyping

ADNI samples were genotyped using either the Illumina 2.5-M array (a byproduct
of the ADNI whole-genome sequencing sample) or the Illumina OmniQuad array [29]
APOE genotype was assessed with two SNPs (rs429358, rs7412) that define the epsilon 2, 3,
and 4 alleles, using DNA extracted by Cogenics from a 3 mL aliquot of EDTA blood. In
EMIF, APOE genotypes were measured using genome-wide SNP genotyping with Global
Screening Array (Illumina Inc., San Diego, CA, USA) [29].

2.4. Cluster Analyses with Non-Negative Matrix Factorization

We clustered proteins that we previously associated with AD [17] (Supplementary Ta-
ble S1) using non-negative matrix factorization (NMF). NMF is a dual clustering approach
that is based on decomposition of the data by parts, which reduces the dimensionality
of data protein expression levels into fewer components which we consider protein pro-
files [30], and concurrently grouping together individuals into subtypes based on how well
their protein expression levels match the protein profiles. NMF is able to capture non-linear
patterns associated with a certain subtype, which is an advantage over other correlation-
based approaches. We determined for each protein which subtype group showed the
highest average levels, and labelled proteins as belonging to a particular subtype accord-
ingly. We used the R package NMF for clustering, with the ‘nonsmooth’ option that ensures
sparse cluster solutions with enhanced separability [31]. Person classification to a subtype
can vary from run to run because NMF is stochastic. Therefore, we used the co-phonetic
coefficient with values ranging from 0 (i.e., unstable solution) to 1 (i.e., subjects are always
classified the same) assess subtype classification stability over 50 different runs of NMF. We
tested up to 5 clusters, and the optimal number of clusters was determined as the number
of clusters for which: 1. The cophonetic correlation was high; 2. Fit compared to a lower
cluster number solution was improved at least 2-fold over a random solution; and 3. Silhou-
ette width of the cluster solution was ≥0.5. Clustering analyses were performed separately
for each cohort. We used the NMF predict function to label individuals according to the
protein cluster that best corresponded with their proteomic expression profile [32]. We per-
formed pathway enrichment analysis for proteins that were characteristic for each subtype
using the online Panther application (release 20210224) [33]. We used the ENCODE and
ChEA consensus transcription factor database in the Enrichr webserver [34,35] to identify
potential upstream drivers of subtype specific protein alterations. We selected pathways
that were most consistently associated with the subtypes for visualization, and report all
observed pathways in the Supplementary Materials. To determine specificity of proteins for
particular cell types we used the BRAIN RNASeq database (http://www.brainrnaseq.org

http://www.brainrnaseq.org
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(accessed on 18 November 2018) [36]. Proteins were labelled as being specifically produced
by a certain cell type when levels were higher than 50% of the total produced across cell
types, as non-specific when none of the cell types was higher than 50%, or as not detected
when levels were all <0.2.

2.5. Post-Hoc Subtype Comparisons Statistical Procedures

After subtyping, we first quantified consistency with AD subtypes by computing
the overlap coefficient of subtype proteomic difference profiles within controls to that of
corresponding AD subtypes. The overlap coefficient [37] is the number of overlapping
proteins divided by the smallest total protein set size, with 0 indicating no overlap, and
1 indicating that a protein set is a complete (sub)set of the other. We also computed
the overlap coefficient to quantify consistency with AD subtypes for the GO biological
pathways enriched. Next, we studied whether control subtypes showed changes over time
in Aβ42 and p181-tau levels, in a subset of ADNI who had repeated measures available.
We also studied, if subtypes would show worsening in delayed memory test scores on the
ADAS-Cog delayed word recall subscale, since this measure was most sensitive to decline
in a previous study [15] (available in ADNI only). Next, we performed post-hoc subtype
comparisons on the following characteristics: the proportion of females and APOE e4
carriers, age, CSF levels of t-tau, p181-tau, and other established AD CSF markers that were
not included in the cluster analyses to provide further independent interpretation of the
cluster solutions. All continuous variables (except for age) were standardized according the
mean and standard deviation of the control group. Subtype comparisons were performed
with general linear models in case of continuous variables with two-sided testing, and
with chi square tests for discrete variables. We used the R package ‘emmeans’ to obtain
estimated marginalized means. All analyses were performed in R v4.0.3 ‘Bunny-Wunnies
freak out’.

3. Results
3.1. Sample Description

We included 127 controls with intact cognition and normal CSF Aβ42 and t-tau levels
(Table 1). Individuals in the EMIF-AD MBD cohort were younger than those in ADNI, and
had a lower education, MMSE score, and a higher proportion of APOE ε4 carriers.

Table 1. Study participant characteristics.

Characteristic EMIF-AD MBD (n = 82) ADNI (n = 45)

Age in years, mean (SD) 61.1 (7) 75.8 (6) *
Female, n (%) 47 (57) 23 (51)

Years of education, mean (SD) 11.9 (3.5) 15.6 (3) *
MMSE, mean (SD) 28.6 (1.3) 29.2 (0.6) *

≥1 APOE ε4 allele, n (%) 14 (22) 4 (8) *
Amyloid β 1–42, mean (SD) ‘ 0 (1) 247.5 (29.2)

P181-tau, mean (SD) ‘ 0 (1) 20.3 (9.4)
T-tau, mean (SD) ‘ 0 (1) 57.1 (13.1)

‘ Variables were Z transformed in EMIF-AD MBD based on control values in order to harmonize across centers.
* Differs between EMIF-AD MBD and ADNI with p < 0.05.

3.2. Three CSF Proteomic Subtypes

Three clusters best described the data of the cognitively intact individuals with normal
AD biomarkers for both EMIF-AD MBD and ADNI (Supplementary Table S2). We repeated
clustering in the EMIF-AD MBD cohort after excluding three individuals who showed
outlying values in their cluster loadings, since these may affect generalizability of the results
(see Supplementary Table S3 for outlier characteristics). Three clusters remained the optimal
solution, and further analyses were performed on this subset. Subject clustering is shown
in Figure 1. In EMIF-AD MBD 32 (41%) and in ADNI 17 (38%) individuals were labelled as
subtype 1, 19 (24%) individuals in EMIF-AD MBD and 12 (27%) in ADNI were labelled
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as subtype 2, and 28 (35%) individuals in EMIF-AD MBD and 16 (36%) in ADNI were
labelled as subtype 3. Next, we studied to what extent the control subtypes corresponded
to subtypes we previously identified in individuals with abnormal AD biomarkers, by
computing consistency of subtype proteomic difference profiles with corresponding AD
subtype proteomic difference profiles. We found mostly higher protein concentrations of
cognitively intact individuals with normal AD biomarkers subtype 1 compared to 3, which
was consistent with increases observed in the neuronal hyperplasticity compared to the
blood–brain barrier dysfunction subtypes in AD (overlap scores of 0.98 in EMIF-AD MBD,
and 0.97 in ADNI; (Supplementary Tables S4 and S5a,b). Protein increases of subtype 2
compared to subtype 3 were also highly consistent with protein increases we observed in
the innate immune activation subtype compared to the blood–brain barrier dysfunction
subtype in AD (overlap score of 0.98 in EMIF-AD MBD and of 0.91 in ADNI). Overlap
in protein increases of subtype 1 compared to subtype 2 was similar to protein increases
observed in the AD hyperplasticity subtype compared to the innate immune activation
subtype in ADNI (overlap score of 0.83), but only weakly consistent in EMIF-AD MBD
(overlap score of 0.21).

Like the AD neuronal hyperplasticity subtype, hyperplasticity subtype 1 in cogni-
tively intact individuals with normal AD biomarkers showed largely higher than average
concentrations of proteins (147 out of 556 in EMIF-AD MBD; 112 out of 149 in ADNI;
Supplementary Table S5a,b). In EMIF-AD MBD 22 proteins were significantly higher than
both subtype 2 and 3, and thus these proteins were considered to be subtype 1 specific.
In ADNI 65 proteins were significantly higher in subtype 1 than subtype 2 and 3. The
majority of these proteins were specifically produced by neurons in both cohorts. Almost
all pathways associated with specific increased proteins in cognitively intact individuals
with normal AD biomarkers and subtype 1 were previously associated with the AD neu-
ronal hyperplasticity subtype (92% EMIF-AD MBD, 90% ADNI). These included nervous
system development, cell adhesion, regulation of transsynaptic signaling, and modulation
of chemical synaptic transmission. Next, we searched for potential drivers of subtype 1
specially increased proteins, which converged on REST in both cohorts (EMIF-AD MBD
padjusted = 0.02; ADNI padjusted = 1.21 × 10−8, Supplementary Table S7), which was also
found in subtype 1 individuals with AD.

In subtype 3, proteins that were increased in subtype 1 were decreased, which was
similar to the decreases observed in the AD blood–brain barrier dysfunction subtype.
Subtype 3 showed largely lower than average concentrations of proteins (456 out of 556
in EMIF-AD MBD; 105 out of 145 in ADNI). Of these, 424 proteins in EMIF-AD MBD and
18 proteins in ADNI were significantly lower than both subtype 1 and 2. The majority
of these proteins were produced by neurons and astrocytes. A large percentage of the
pathways associated with subtype 3 specifically decreased proteins were also previously
associated with decreased proteins in the blood–brain barrier dysfunction subtype in
AD (76% EMIF-AD MBD, 87% ADNI). Pathways enriched consistently in both cohorts
and previously in the AD blood–brain barrier dysfunction subtype were nervous system
development, cell adhesion, regulation of transsynaptic signaling, and modulation of
chemical synaptic transmission, which were also associated with subtype 1 specifically
increased proteins. Potential drivers of protein decreases in this subtype was REST in
both cohorts (EMIF-AD MBD padjusted = 2.08 × 10−13; ADNI padjusted = 0.02), similar as
in the AD blood–brain barrier dysfunction subtype. Control subtype 3 further showed
specific increases for 87 proteins in EMIF-AD MBD, and 2 in ADNI. Thirty-five (40%) of
these specifically increased proteins were previously associated with blood–brain barrier
dysfunction (Supplementary Table S5a) [38]. Pathway analyses for these proteins from
EMIF-AD MBD showed 89% overlap with those we previously associated with increased
proteins in the AD blood–brain barrier dysfunction subtype, including acute inflammatory
response, B cell receptor signaling pathway, and blood coagulation fibrin cloth formation.
No transcription factors were associated with subtype 3 specifically increased proteins.
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Figure 1. (a) Subject scores which reflect how well they match each of the three subtypes, individuals were assigned to the 
subtype on which they showed the highest loading; (b) protein levels averaged across individuals for each subtype (see 
supplementary Table S5a,b for statistics of protein level comparisons between subtypes); (c) proportion of subtype-specific 
proteins that were labelled to be specific for a particular cell type (left: EMIF-AD MBD; right: ADNI); (d) selection of 
pathways enriched for subtype-specific proteins (see supplemental Table S6 for complete list of enriched pathways). For 
(c,d): bars going up represent pathways associated with increased proteins, bars going down represent pathways 
associated with decreased proteins, and in (d) absolute numbers represent log(pFDR) * −1, * is times. 

Figure 1. (a) Subject scores which reflect how well they match each of the three subtypes, individuals were assigned to the
subtype on which they showed the highest loading; (b) protein levels averaged across individuals for each subtype (see
Supplementary Table S5a,b for statistics of protein level comparisons between subtypes); (c) proportion of subtype-specific
proteins that were labelled to be specific for a particular cell type (left: EMIF-AD MBD; right: ADNI); (d) selection of
pathways enriched for subtype-specific proteins (see Supplemental Table S6 for complete list of enriched pathways). For
(c,d): bars going up represent pathways associated with increased proteins, bars going down represent pathways associated
with decreased proteins, and in (d) absolute numbers represent log(pFDR) * −1, * is times.
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Subtype 2 showed mostly higher than average protein concentrations in EMIF-AD
MBD (457 out of 556 proteins), but in ADNI most proteins had lower than average con-
centrations (125 out of 149 proteins). Of increased proteins, 89 proteins were significantly
different from subtypes 1 and 3 in EMIF-AD MBD, and 18 in ADNI. The majority of
increased proteins in EMIF-AD MBD subtype 2 individuals were produced by oligoden-
drocytes, and endothelial cells. No pathways were enriched for ADNI subtype 2 specific
proteins, and no specific cell type involvement was observed. In EMIF-AD MBD, pathways
associated with subtype 2 specifically increased proteins overlapped 71% with pathways
previously associated with the innate immune system subtype, and included complement
activation, extracellular matrix organization, inflammatory response, and leukocyte ac-
tivation, in line with the AD immune activation subtype. No transcription factors were
associated with proteins specifically increased in control subtype 2.

3.3. Longitudinal Comparisons of CSF Proteomic Subtypes on Amyloid and p-Tau Levels, and
Delayed Memory Functioning

We next tested whether the subtypes differed in their risk to develop AD pathology,
by estimating changes over time in CSF Aβ42 and p181-tau levels, which was available in
ADNI only (n = 45, mean ± SD 3.2 ± 1.2 repeated samples over mean ± SD 3 ± 1.9 years).
Subtype 1 individuals showed decreases in Aβ42 towards abnormal levels (β ± SE =
−4.4 ± 1.9 pg/mL per year; p = 0.03) and increases in p181-tau towards abnormal levels
(β ± SE = 2.6 ± 0.9 pg/mL per year; p = 0.01). Subtype 2 individuals showed increases
in p181-tau (β ± SE = −3.1 ± 1.1 pg/mL per year; p = 0.01) and no changes in Aβ42
levels (β ± SE = −3.7 ± 2.32 pg/mL per year, p = 0.12). Subtype 3 individuals showed
decreases towards more abnormal levels in aβ42 (β ± SE = −5.6 ± 2.0 pg/mL per year;
p = 0.009), but no changes in p181-tau levels (β ± SE = 1.29 ± 1.0 pg/mL per year, p = 0.22).
Comparing delayed memory scores at baseline showed similar performance between
subtypes (p = 0.83). Repeated delayed memory test scores over showed worsening over
time in subtype 3 individuals (β ± SE = 0.20 ± 0.07, p = 0.005), and no significant changes
in subtype 1 and 2 individuals (subtype 1: β ± SE = 0.06 ± 0.06, p = 0.33; subtype 2:
β ± SE= 0.15 ± 0.08; p = 0.08). Differences in slopes between subtypes were not significant
(pinteraction = 0.30).

3.4. CSF Proteomic Subtypes Comparisons on Other Biological Characteristics

Finally, we compared subtypes on other biological characteristics. In EMIF-AD MBD
and in ADNI no differences were found amongst subtypes in the proportion of APOE
ε4 carriers or on average age (Figure 2; Supplementary Table S8). Subtype 1 individuals
showed a higher proportion of females than subtype 3 (p = 0.02) in EMIF-AD MBD, while
no sex differences were found in ADNI (all p > 0.05). In ADNI, subtype 1 individuals
showed higher levels of BACE1 activation compared to subtype 3 (p = 0.03; Figure 2b), and
higher levels of aβ40 and aβ38 compared with subtype 2 and 3 (aβ40: 1 vs. 2 p = 0.0495;
1 vs. 3 p = 0.02; aβ38: 1 vs. 2 p = 0.04; 1 vs. 3 p = 0.004). In both EMIF-AD MBD and in
ADNI, subtype 1 showed highest levels of t-tau, and subtype 3 the lowest, although these
differences were not significant (all p > 0.05). Subtype 1 in ADNI showed higher levels of
VILIP (p = 0.009), neurogranin (p = 0.046), and CH3L1 (p = 0.03) and tended to show higher
levels of SNAP-25 (p = 0.08). These differences in CSF markers were similar, although
attenuated, as we previously observed between AD subtypes 1 (neuronal hyperplasticity)
and 3 (blood–brain barrier dysfunction).
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4. Discussion

The main finding of this study is that CSF proteomic profiles for AD pathophysio-
logical subtypes may already be present in older individuals with intact cognition and
a normal AD biomarker profile. Specifically, we identified a subgroup of cognitively in-
tact individuals with evidence for a neuronal hyperplasticity, and another subgroup with
evidence for blood–brain barrier dysfunction, both of which we previously observed in
AD. Only these two subtypes also showed increased risk for amyloid aggregation over
time. Furthermore, the neuronal hyperexcitation subtype also showed increases in p181-tau
levels over time, while the blood–brain barrier dysfunction subtype did not. Another
subtype in controls did not show clear correspondence with an AD subtype, and did not
show changes in amyloid over time. Our findings suggest that alterations in processes
related to neuronal hyperplasticity or blood–brain barrier dysfunction may exist before
Aβ 1–42 and p181-tau have become abnormal in CSF. However, the possibility that these
subgroups may reflect normal physiological variability between individuals cannot be
excluded. Still, the presence of blood–brain barrier dysfunction in subtype 2, and the
elevated tau levels in subtype 1 suggest that these proteomic patterns reflect, possibly
in part, pathophysiological processes. Future studies should further clarify this issue by
collecting repeated CSF proteomics and amyloid and tau measures in cognitively normal
older individuals with an initially normal AD CSF profile.

Studies so far demonstrated the usefulness of CSF proteomic analyses to capture
disease heterogeneity in AD [17,39,40]. We now show that some of the AD subtype specific
processes may already be detected before amyloid aggregation in older individuals with
intact cognition and AD biomarker values. Our finding that protein increases in CSF related
to APP metabolism precede amyloid aggregation in subtype 1 is in line with observations
from other studies [15,41], suggesting that increased amyloid production may play a
role in sporadic AD, but only for a specific subgroup of individuals. It must be noted,
however, that repeated memory test scores over time for subtype 1 individuals in ADNI
did not show decline, and so it is unclear whether these processes would directly impact
on cognitive function. An important implication of our findings is that amyloid prevention
trials that target BACE1 activity, may only be beneficial for this group of individuals. This
subtype further also showed increased levels of a group of proteins related to neuronal
plasticity processes. These proteins were associated with the transcriptional repressor factor
REST, which is an important regulator of neuronal development and plasticity related
processes [42–44]. A previous iPSC model from sporadic AD patients showed similar
increases in proteins related to neuronal development, which also converged on a role for
REST [44]. Those neurons showed increased excitability, amyloid and tau secretion. It is
unclear why REST is lost during aging, but possibly reduced integrity of nuclear lamina
may lead to translocation of REST from the nucleus into the cytosol [44].

The presence of a subtype indicative of blood–brain barrier dysfunction in cognitively
intact individuals with normal AD biomarkers, may indicate an alternative route towards
AD pathology [45]. These individuals showed specific increases in proteins that have been
associated with blood–brain barrier permeability [38]. Blood-derived proteins such as albu-
min, immunoglobins, and prothrombin, which we observed to be increased in this subtype
have been associated with pericyte loss [46]. Such damage may lead to further buildup of
aggregated proteins through hampered clearance, but also may invoke an inflammation
response. Possibly, blood–brain barrier permeability is compromised by very early changes
in amyloid damaging the vasculature [46]. With aging the blood–brain barrier becomes
more permeable, and this might contribute to cognitive decline [46–49]. In our analyses,
individuals with this subtype were the only ones to show decline on delayed memory
test scores over time. Blood–brain barrier dysfunction could lead to decreased perfusion
and impaired nutrient delivery to the brain, which may contribute to pathophysiological
responses of the brain [46,49]. The mainly decreased concentrations of proteins of this
subtype overlapped largely with those increased in the neuronal hyperplasticity subtype,
which also converged on REST. Since protein levels were decreased, it might be that this
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subtype shows overexpression of REST, resulting in hypoplasticity. REST overexpression
has been reported in ischemic conditions [42,50]. Possibly, blood–brain barrier dysfunction
may lead to hypoxia that increases REST expression. It would be of interest to measure
REST levels in brain tissue of individuals who present with this subtype. Proteins decreased
in this subtype also showed specific enrichment for processes related to autophagy and
chaperone mediated autophagy (in EMIF-AD MBD only). Dysfunctional autophagy is
a well-established process in AD, with dystrophic neurites showing mostly a buildup of
autophagic vacuoles, in addition to aggregated tau and microtubule proteins [51]. Decline
in autophagic processing is observed with aging [52] and may lead to intracellular aggrega-
tion of amyloid, as well as decreased amyloid secretion [53]. A recent study reported that
mice lacking lysosome-associated membrane protein 2A, which is an isoform of the LAMP2
gene that participates in chaperone mediated autophagy, showed increased intracellular
aggregation of a large number of proteins including PDIA, PPIA, and PARK7, which we
also observed decreased in our CSF proteomic data in this subtype [54]. It could be hypoth-
esized that both REST overactivation or dysfunctional autophagy related processes will
lead to further decreases in CSF protein levels, and future studies should investigate this
by measuring proteomics in repeated CSF samples over time.

Finally, in both EMIF-AD MBD and in ADNI, we observed another subtype that
showed a less consistent correspondence across cohorts with subtypes we previously
identified in AD. Although there was some overlap in the pathways associated with
this subtype in EMIF-AD MBD with those we previously observed in the AD innate
immune activation subtype, this cohort’s relative subtype differences did not overlap with
those observed in AD. For ADNI the proteomic profile of this subtype showed a better
correspondence with the AD innate immune system activation subtype, but no pathways
were enriched and so could not be compared. This may mean that a proteomic profile
associated with innate immune activation is down-stream from amyloid aggregation in
AD. Alternatively, since in this study these individuals did not show decreases in amyloid
over time, perhaps, this subtype could reflect normal individuals.

We found CSF proteomic subtypes in control cases that resembled those we previously
observed in AD. Still, a potential limitation of the present study is that we only had repeated
CSF and cognition over time available for the ADNI cohort, and so we are unable to verify
whether the subtypes we identified in EMIF-AD MBD would show similar changes in
amyloid and tau over time as in ADNI. Future studies should further investigate this
question by collecting repeated proteomic, amyloid, and tau samplings over time, as well
as cognitive tests. Another limitation is that although the total group of individuals we
studied was large, the different subgroup sizes were small, making it more difficult to
detect subgroup differences. Furthermore, it might be that more subgroups exist that are
related to development of AD, and larger initial group sizes are required in order to be
able to capture such subgroups if they exist. Finally, our study was cross-sectional, and
although two subtypes showed highly consistent proteomic differences to those observed
in AD, repeated proteomic sampling over time is required to further verify whether their
proteomic profiles become more like those observed in AD.

5. Conclusions

Proteomic AD subtypes can already be detected in cognitively normal individuals.
These subtype profiles might represent pathophysiological changes upstream from amyloid
and/or p-tau aggregation. These results show that CSF proteomics may have use in
identifying subtype specific early changes in AD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/proteomes9030036/s1, Table S1: Average (SD) protein levels for AD groups, Table S2: Fit
statistics of solutions for increasing number of clusters (2 to 5), Table S3: Descriptive comparison of
individuals who were excluded from EMIF-AD MBD due to outlying values on cluster loadings,
Table S4: Overlap of AD and controls for proteins that differ between subtypes, Table S5: Average
protein levels according to subtypes, comparisons amongst subtypes, and cell type production
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assignment, (a) in EMIF-AD MBD, (b) in ADNI, Table S6: GO biological pathway enrichment,
Table S7: Transcription factor enrichment, Table S8: Proportions or estimated marginal means (se) for
biomarker comparisons from Figure 2.
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